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Abstract

In this paper initial-boundary-value problems for a linear wave (string) equation are considered. These
problems can be used as simple models to describe the vertical vibrations of a conveyor belt, for which the
velocity is small with respect to the wave speed and is assumed to move with a time-varying speed. Formal
asymptotic approximations of the solutions are constructed to show the complicated dynamical behavior of
the conveyor belt. It will also be shown that the truncation method cannot be applied to this problem in
order to obtain approximations valid on long time scales.
r 2002 Published by Elsevier Science Ltd.

1. Introduction

Investigating transverse vibrations of a belt system is a challenging subject which has been
studied for many years (see Refs. [1–4] for an overview), and is still of interest today.
The main purpose of studying the dynamic behavior of a belt system is to determine the natural

frequencies of the vibrations. By knowing these natural frequencies, the so-called resonance-free
belt system can be designed (see Ref. [3]). Resonances that can cause severe vibrations may be
initiated by some parts of the belt system, such as the varying belt speed, the roll eccentricities,
and other belt imperfections. The occurrence of resonances should be prevented since they can
cause operational and maintenance problems including excessive wear of the belt and the support
component, and the increase of energy consumption of the system.
Belt vibrations can be classified into two types, i.e., whether it is of a string-like or of a

beam-like type, depending on the bending stiffness of the belt. If the bending stiffness can be
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neglected then the system is classified as string (wave)-like, otherwise it is classified as beam-like.
The transverse vibrations of the belt system may be described as

string-like by

vtt þ 2Vvxt þ Vtvx þ ðkV2 � c2Þvxx ¼ 0; ð1Þ

and beam-like (with a string effect) by

vtt þ 2Vvxt þ Vtvx þ ðkV2 � c2Þvxx þ ðEI=rAÞvxxxx ¼ 0; ð2Þ

where vðx; tÞ is the displacement of the belt in the y (vertical) direction, V is the time-varying belt
speed, c is the wave speed, E is Young’s modulus, I is the moment of inertia with respect to the x-
(horizontal) axis, r is the mass density of the belt, A is the area of the cross-section of the belt, k is
a constant representing the relative stiffness of the belt (its value is in ½0; 1�), x is the co-ordinate in
the horizontal direction, and t is the time.
The beam-like system with a low time-varying speed will be considered in a forthcoming paper.

In this paper, the string-like case will be studied in which the belt velocity V ðtÞ is given by

VðtÞ ¼ eðV0 þ a sinðOtÞÞ; ð3Þ

where e is a small parameter with 0oe51; and V0 and a are constants with V0 > 0 and V0 > jaj:
The velocity variation frequency of the belt is given by O: In fact the small parameter e indicates
that the belt speed V ðtÞ is small compared to the wave speed c: The condition V0 > jaj guarantees
that the belt will always move forward in one direction. It will be shown that certain values of O
can lead to complicated internal resonances of the belt system.
While for more accurate results, a non-linear model is required, it is initially helpful to

investigate a linear model. Knowledge about linear models is important in order to understand
results found in non-linear models, especially for those cases which are weakly non-linear. For
non-linear models describing the dynamic behavior of belts, one refers readers to Refs. [4–6]. In
Ref. [6] the role played by the external frequency of the non-constant belt velocity and the bending
stiffness was studied. It was found that, as the bending stiffness tends to zero, the system behaved
more like a string and its dynamics became more complicated than the beam-like system.
Most belt studies involve mainly belts moving with a constant velocity. Recently in a series of

papers [7–10] several authors considered the vibrations of belts moving with time-dependent
velocities and the vibrations of tensioned pipes conveying fluid with time-dependent velocities. In
fact in Refs. [7–10] Eqs. (1) or (2) have been studied, in which V ðtÞ; as given by Eq. (3), is included.
To find approximations of the displacement of the belt in the vertical direction, the authors of
Refs. [7–10] used the eigenfunction expansion method, the Galerkin truncation method, and the
multiple time-scales perturbation method as for instance described in Refs. [11,12]. To apply the
method of eigenfunction expansions and the perturbation method, special attention has to be paid
to the OðeÞ terms involving vx and vxt in Eqs. (1) or (2). To apply the truncation method the
internal resonances between the vibration modes have to be studied. In Refs. [7–10] the OðeÞ terms
in Eqs. (1) or (2) involving vx and vxt are not treated correctly by assuming that truncation to one
mode (or a few modes) of the constant belt velocity system is allowable. In this paper one shows
that this truncation is not allowable. In Refs. [7,9], no instabilities of the belt system (as described
by Eq. (1)) were found using the truncation method when the velocity variation frequency O is
equal to or close to the difference of two natural frequencies of the constant-velocity system. In
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this paper it will be shown that instabilities can also occur when O is equal to or close to the
difference of two natural frequencies of the constant-velocity system. In Refs. [4,13–17] several
remarks can be found on how and when truncation is allowable. In those papers weakly non-
linear problems for wave and for beam equations have been studied.
In this paper one considers the vibrations of a belt modelled by a string moving with a non-

constant velocity V ðtÞ ¼ eðV0 þ a sinOtÞ; where V0; a; and O are constants with V0 > jaj: The
velocity VðtÞ can be considered as a periodically changing velocity such that the belt still moves in
one direction. This variation in V ðtÞ can be considered as some kind of an excitation. In relation
to excitations, some results in this area have been obtained in Refs. [18,19]. In Ref. [18], problems
for a string moving with a constant velocity were considered when one of its ends (i.e., x ¼ L) is
subjected to an harmonic excitation. In Ref. [20], the vibrations of the string at x ¼ L is forced
such that vðx; tÞ ¼ v0 cosOt: In Ref. [20], the author also studied the case where one end of the
moving string was subjected to an harmonic excitation, representing the case of a belt travelling
from an eccentric pulley to a smooth pulley, whereas the case where both ends of the string are
excited has been studied in Ref. [21]. In that paper a moving string model was used to study the
transverse vibrations of power transmission chains. In all of the papers [18–21], the belt velocity is
assumed to be constant.
This paper is organized as follows. In Section 2, an equation is derived to describe the

transversal vibrations of a belt (modelled as a string). Here one assumes that the belt moves with
an arbitrary low velocity which varies harmonically, i.e., V ðtÞ ¼ eðV0 þ a sinOtÞ: In Section 3, the
energy and the boundedness of the solution of the problem as derived in Section 2 is studied. In
Section 4, the application of the two time-scales perturbation method is discussed to solve the
equation. It turns out that there are infinitely many values of O that can cause internal resonances.
In this paper, only the resonance case O ¼ cp=L is investigated. All other resonance cases can be
studied similarly. In this section it is also shown that the truncation method cannot be applied to
this problem due to the distribution of energy among all vibration modes. In the last part of
Section 4, a detuning case is also studied for O ¼ cp=L: Finally, in Section 5 some remarks will be
made and some conclusions drawn.

2. A string model

In this section the dynamic behavior of a conveyor belt, modelled by a moving string, is
studied (see Fig. 1). Since the belt is assumed to move with a speed V ðtÞ (which explicitly
depends on t), one obtains for the time derivative of the transversal displacement vðx; tÞ of
the belt

Dv=Dt ¼ @v=@t þ ð@v=@xÞðdx=dtÞ ¼ vt þ Vvx; ð4Þ

and for the second order derivative with respect to time

D2v=Dt2 ¼ vtt þ 2Vvxt þ V2vxx þ Vtvx: ð5Þ

Accordingly, the equation of motion is

T0vxx ¼ rD2v=Dt2; c2vxx ¼ vtt þ 2Vvxt þ V2vxx þ Vtvx; ð6Þ
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where c ¼
ffiffiffiffiffiffiffiffiffiffiffi
T0=r

p
; in which T0 and r are assumed to be the constant tension and the constant

mass density of the string, respectively. At x ¼ 0 and x ¼ L one assumes that the string is fixed in
vertical direction, where L is the distance between the pulleys.
For V ðtÞ one uses V ðtÞ ¼ eðV0 þ a sinOtÞ with V0 > 0 and V0 > jaj: This velocity should be

interpreted as low by comparison with the wave speed c of the belt. The condition V0 > jaj
guarantees that the belt will always move forward in one direction. Consequently, Eq. (6) becomes

c2vxx � vtt ¼ e½aO cosðOtÞvx þ 2ðV0 þ a sinðOtÞÞvxt� þ e2½V0 þ a sinðOtÞ�2vxx; ð7Þ

where the boundary and initial conditions are given by

vð0; t; eÞ ¼ vðL; t; eÞ ¼ 0; vðx; 0; eÞ ¼ f ðxÞ; vtðx; 0; eÞ ¼ gðxÞ; ð8Þ

where f ðxÞ and gðxÞ represent the initial displacement and the initial velocity of the belt,
respectively. Throughout this paper it is assumed that f and g are sufficiently smooth such that a
two-times continuously differentiable solution for the initial-boundary-value problem (7), (8)
exists. Moreover, it is assumed that all series representations for the solution v (and its
derivatives), and for the functions f and g are convergent. In this section the initial-boundary-
value problem (7), (8) for vðx; tÞ will be reduced to a system of infinitely many ordinary differential
equations. This system will be studied further in Section 4 using a two time-scales perturbation
method.
To satisfy the boundary conditions all functions should be expanded in Fourier sine series. So

the solution is of the form vðx; t; eÞ ¼
P

N

n¼1 vnðt; eÞ sinðnpx=LÞ: This is an odd function in x; both
with regard to x ¼ 0 and x ¼ L: All functions on the right side of Eq. (7) should be extended
properly to make them odd with respect to x ¼ 0 and x ¼ L; and periodic with period 2L thereof.
Note that this extension or expansion process is not applied in Refs. [7–9] causing the occurrence
of incorrect results in the critical values of O:
To make the right side of Eq. (7) odd, terms which are not already in Fourier sine series form in

x are multiplied with (see also Refs. [13,16])

HðxÞ ¼
1 if 0oxoL

�1 if � Loxo0

( )
¼

XN
j¼0

4

ð2j þ 1Þp
sin

ð2j þ 1Þpx

L

� �
: ð9Þ

Substituting Eq. (9) into Eq. (7) results in

c2vxx � vtt ¼ e
XN
j¼0

4

ð2j þ 1Þp
sin

ð2j þ 1Þpx

L

� �
½aO cosðOtÞvx þ 2ðV0 þ a sinðOtÞÞvxt�

þ e2ðV0 þ a sinðOtÞÞ2vxx: ð10Þ

Fig. 1. Conveyor belt system.
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Substitution of vðx; tÞ ¼
P

N

n¼1 vnðt; eÞ sinðnpx=LÞ into Eq. (10) results in

XN
n¼1

�
cnp
L

	 
2
vn � .vn

� �
sin

npx

L

	 


¼ e
XN
n¼1

XN
j¼0

4

ð2j þ 1Þp
sin

ð2j þ 1Þpx

L

� �

	 aO cosðOtÞ
np
L

vn cos
npx

L

	 

þ 2ðV0 þ a sin ðOtÞÞ

np
L

’vn cos
npx

L

	 
	 


� e2
XN
n¼1

ðV0 þ a sinOtÞ2
np
L

	 
2
vn sin

npx

L

	 

: ð11Þ

By multiplying Eq. (11) with sinðkpx=LÞ; and by integrating the so-obtained equation with respect
to x from x ¼ �L to x ¼ L; one obtains

.vk þ
ckp
L

� �2
vk ¼ e

X
1

�
X
2

�
X
3

" #
2n

ð2j þ 1ÞL
½aO cosðOtÞvn þ 2ðV0 þ a sinðOtÞÞ’vn�

þ e2ðV0 þ a sinðOtÞÞ2
kp
L

� �2
vk; ð12Þ

where
P

1 ¼
P

k¼n�ð2jþ1Þ;
P

2 ¼
P

k¼2jþ1þn; and
P

3 ¼
P

k¼2jþ1�n : Eq. (12) will be studied
further in Section 4.

3. Energy and boundedness of the solution

The concept of energy is used in many parts of the next sections. In this section the energy of the
moving string as modelled by the wave equation is derived

c2vxx ¼ vtt þ 2Vvxt þ V2vxx þ Vtvx: ð13Þ

On multiplying Eq. (13) with ðvt þ VvxÞ one obtains after some elementary calculations

ð12 v2t þ vtVvx þ 1
2 c2v2x þ

1
2 V2v2xÞt

þ ð�c2vxvt � 1
2

c2Vv2x þ Vv2t þ V2vxvt þ 1
2

V3v2x �
1
2

VvtÞx ¼ 0: ð14Þ

Integrating Eq. (14) with respect to x from x ¼ 0 to x ¼ L; and then integrating the so-obtained
equation with respect to t from t ¼ 0 to t; one obtainsZ L

0

ð1
2

v2t þ Vvtvx þ 1
2
ðc2 þ V2Þv2xÞj

t
t¼0 dx ¼ 1

2

Z t

0

ðc2 � V2ÞVv2xj
L
x¼0 dt: ð15Þ

The energy EðtÞ of the moving string is now defined to be

EðtÞ ¼ 1
2

Z L

0

ððvt þ VvxÞ
2 þ c2v2xÞ dx: ð16Þ
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Thus, Eq. (15) can be written as

EðtÞ � Eð0Þ ¼ 1
2

Z t

0

ðc2 � V2ÞVv2xj
L
x¼0 dt

3
dE

dt
¼ 1

2
ðc2 � V2ÞV ðv2xðL; tÞ � v2xð0; tÞÞpMV ; ð17Þ

where M is the maximum of 1
2
ðc2 � V2Þðv2xðL; tÞ � v2xð0; tÞÞ; where it has been assumed that vðx; tÞ is

two-times continuously differentiable on 0pxpL and 0ptpTe�1 for some positive constant
ToN: It follows from Eq. (17) that dE=dtpOðeÞ on 0ptpTe�1 since V is OðeÞ: And so,
EðtÞ � Eð0ÞpOðetÞ on 0ptpTe�1: The following estimate on vðx; tÞ then also holds

jvðx; tÞj ¼
Z x

0

vxðx; tÞ dx

����
����p

Z x

0

jvxðx; tÞj dxp
Z L

0

jvxðx; tÞj dx

p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

12 dx

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiZ L

0

2 ð1
2
ðc2v2x þ ðvt þ VvxÞ

2ÞÞ dx

s
¼

ffiffiffiffi
L

p ffiffiffiffiffiffiffiffiffiffiffi
2EðtÞ

p
; ð18Þ

on 0ptpTe�1: One refers to Ref. [22] for more detailed descriptions of energetics of translating
continua.

4. Application of the two time-scales perturbation method

Consider again Eq. (12). The application of a straightforward expansion method to solve
Eq. (12) will result in the occurrence of so-called secular terms which causes the approximations to
become unbounded on long time scales. To remove those secular terms, one introduces two time
scales t0 ¼ t and t1 ¼ et: The introduction of these two time scales defines the transformations

vkðt; eÞ ¼wkðt0; t1; eÞ; dvkðt; eÞ=dt ¼ @wk=@t0 þ eð@wk=@t1Þ;

d2vkðt; eÞ=dt2 ¼ @2wk=@t20 þ 2eð@
2wk=@t0@t1Þ þ e2ð@2wk=@t21Þ: ð19Þ

By substituting Eq. (19) into Eq. (12) one obtains

@2wk=@t20 þ 2eð@
2wk=@t0@t1Þ þ ðckp=LÞ2wk

¼ e
X
1

�
X
2

�
X
3

" #
2n

ð2j þ 1ÞL
ðaO cosðOtÞwn þ 2½V0 þ a sinðOtÞð@wn=@t0Þ�Þ þ Oðe2Þ: ð20Þ

Assuming that wkðt0; t1; eÞ ¼ wk0ðt0; t1Þ þ ewk1ðt0; t1Þ þ?; then in order to remove the secular
terms up to OðeÞ; it is necessary to solve the problems

Oð1Þ: @2wk0=@t20 þ ðckp=LÞ2wk0 ¼ 0;
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OðeÞ: @2wk1=@t20 þ ðckp=LÞ2wk1 ¼ � 2
@2wk0

@t0@t1
þ

X
1

�
X
2

�
X
3

" #

	
2n

ð2j þ 1ÞL
aO cosðOt0Þwn0 þ 2ðV0 þ a sinðOt0ÞÞ

@wn0

@t0

� �
: ð21Þ

The Oð1Þ problem has as its solution

wk0ðt0; t1Þ ¼ Ak0ðt1Þ cosðckpt0=LÞ þ Bk0ðt1Þ sinðckpt0=LÞ; ð22Þ

where Ak0 and Bk0 are still arbitrary functions that can be used to avoid secular terms in the
solution of the OðeÞ problem.
From the OðeÞ problem it can readily be seen that there are infinitely many values of O that can

cause internal resonance. In fact these values are ðn þ kÞcp=L; ðn � kÞcp=L; ðk � nÞcp=L and �ðn þ
kÞcp=L; where k ¼ n � 2j � 1; or k ¼ 2j þ 1� n; or k ¼ n þ 2j þ 1 (see also the summations in
Eq. (12)). It is also easy to see that these values for O are always odd multiples of cp=L (or are in
an OðeÞ-neighbourhood of these odd multiples). In Refs. [7,9], the critical values of O are found to
be even multiples of the natural frequency. These incorrect results in Refs. [7,9] for OðeÞ belt
velocities are due to the fact that certain terms in the PDE (that is, terms involving vx and vxt in
Eq. (7)) are not extended or expanded correctly.
To show how the secular terms can be eliminated three cases will be considered:

O ¼ cp=L; O ¼ cp=L þ ed and the case in which O is not in a neighborhood of an odd multiple
of O ¼ cp=L:

4.1. Case 1: O ¼ cp=L

In Appendix A the equations for Ak0ðt1Þ and Bk0ðt1Þ are derived in order that the
approximations of the solution of the problem do not contain secular terms. It turns out that
Ak0 and Bk0 have to satisfy

dAk0=d%t1 ¼ ðk þ 1ÞBðkþ1Þ0 þ ðk � 1ÞBðk�1Þ0;

dBk0=d%t1 ¼ �ðk þ 1ÞAðkþ1Þ0 � ðk � 1ÞAðk�1Þ0; ð23Þ

where %t1 ¼ ða=LÞt1; and k ¼ 1; 2; 3;y : For O ¼ mðcp=LÞ; where m is odd, the same analysis as
presented in Appendix A can be followed. It then follows that Ak0 and Bk0 have to satisfy
ðk ¼ 1; 2; 3;yÞ

dAk0

d%t1
¼

ðk þ mÞð2k þ 2m � 1Þ
mð2k þ mÞ

BðkþmÞ0 þ
ðk � mÞð2k � 2m þ 1Þ

mð2k � mÞ
Bðk�mÞ0;

dBk0

d%t1
¼ �

ðk þ mÞð2k þ 2m � 1Þ
mð2k þ mÞ

AðkþmÞ0 �
ðk � mÞð2k � 2m þ 1Þ

mð2k � mÞ
Aðk�mÞ0:

It should be noticed that for m ¼ 1 this system of ordinary differential equations is reduced to
system (23). In this section system (23), which is a coupled system of infinitely many ordinary
differential equations is studied.
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4.1.1. Application of the truncation method

First, in trying to find an approximation of the solution of system (23) by using Galerkin’s
truncation method, the first few modes will be used and the higher order modes neglected. For
example, in this case, by considering the first three modes, one obtains from Eq. (23)

’X ¼ AX; ð24Þ

where

X ¼

B10

A10

B20

A20

B30

A30

0
BBBBBBBBB@

1
CCCCCCCCCA

and A ¼

0 0 0 �2 0 0

0 0 2 0 0 0

0 �1 0 0 0 �3

1 0 0 0 3 0

0 0 0 �2 0 0

0 0 2 0 0 0

0
BBBBBBBBB@

1
CCCCCCCCCA
;

and where ’X represents the derivative of X with respect to %t1: This system has eigen-
values 2

ffiffiffi
2

p
i;�2

ffiffiffi
2

p
i; and 0, all with multiplicity 2. Their associated eigenvectors are

ð0; 1;
ffiffiffi
2

p
i; 0; 0; 1Þ; ð1; 0; 0;�

ffiffiffi
2

p
i; 1; 0Þ; ð1; 0; 0;

ffiffiffi
2

p
i; 1; 0Þ; ð0; 1;�

ffiffiffi
2

p
i; 0; 0; 1Þ; ð�3; 0; 0; 0; 1; 0Þ and

ð0;�3; 0; 0; 0; 1Þ; respectively. The solution of Eq. (24) is then given by

B10ðt1Þ ¼ C3 cosð2
ffiffiffi
2

p
t1Þ þ C4 sinð2

ffiffiffi
2

p
t1Þ � 3C5;

A10ðt1Þ ¼ C1 cosð2
ffiffiffi
2

p
t1Þ þ C2 sinð2

ffiffiffi
2

p
t1Þ � 3C6;

B20ðt1Þ ¼ �
ffiffiffi
2

p
C1 sinð2

ffiffiffi
2

p
t1Þ þ

ffiffiffi
2

p
C2 cosð2

ffiffiffi
2

p
t1Þ �

ffiffiffi
2

p
C4 cosð2

ffiffiffi
2

p
t1Þ;

A20ðt1Þ ¼
ffiffiffi
2

p
C3 sinð2

ffiffiffi
2

p
t1Þ �

ffiffiffi
2

p
C4 cosð2

ffiffiffi
2

p
t1Þ;

B30ðt1Þ ¼ C3 cosð2
ffiffiffi
2

p
t1Þ þ C4 sinð2

ffiffiffi
2

p
t1Þ þ C5;

A30ðt1Þ ¼ C1 cosð2
ffiffiffi
2

p
t1Þ þ C2 sinð2

ffiffiffi
2

p
t1Þ þ C6; ð25Þ

where C1;C2;y;C6 are all constants of integration. Note that all the bars in Eq. (25) has been
dropped.
From the initial conditions (8), that is, vðx; 0Þ ¼ f ðxÞ and vtðx; 0Þ ¼ gðxÞ it follows that

f ðxÞ ¼
XN
k¼1

vkð0; eÞ sin
kpx

L

� �
3 vkð0; eÞ ¼

2

L

Z L

0

f ðxÞ sin
kpx

L

� �
dx;

gðxÞ ¼
XN
k¼1

’vkð0; eÞ sin
kpx

L

� �
3 ’vkð0; eÞ ¼

2

L

Z L

0

gðxÞ sin
kpx

L

� �
dx: ð26Þ

Moreover, since vkð0; eÞ ¼ wkð0; 0; eÞ ¼ wk0ð0; 0Þ þ ewk1ð0; 0Þ þ? and ’vkð0; eÞ ¼ ’wkð0; 0; eÞ ¼
’wk0ð0; 0Þ þ e ’wk1ð0; 0Þ þ? it follows that

wk0ð0; 0Þ ¼
2

L

Z L

0

f ðxÞ sin
kpx

L

� �
dx; ’wk0ð0; 0Þ ¼

2

L

Z L

0

gðxÞ sin
kpx

L

� �
dx: ð27Þ
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From Eqs. (22) and (27) one then obtains

Ak0ð0Þ ¼
2

L

Z L

0

f ðxÞ sin
kpx

L

� �
dx; Bk0ð0Þ ¼

2

ckp

Z L

0

gðxÞ sin
kpx

L

� �
dx: ð28Þ

Eq. (28) can be used to calculate the constants in Eq. (25).
In summary, after all constants in Eq. (25) have been calculated, wk0ðt0; t1Þ can be determined

using Eq. (22). Then vðx; t; eÞ can be approximated by
P3

k¼1 vkðt; eÞ sinðkpx=LÞ:
For example, using 1, 2, or 3 modes, respectively, with f ðxÞ ¼ ð�8=p3Þ sinðpxÞ; gðxÞ ¼ 0; c ¼

L ¼ 1 one finds as approximations for vðx; t; eÞ:

vðx; t; eÞEð�8=p3Þ cosðpt0Þ sinðpxÞ;

vðx; t; eÞEð�8=p3Þ cosð
ffiffiffi
2

p
t1Þ cosðpt0Þ sinðpxÞ þ ð4

ffiffiffi
2

p
=p3Þ sinð

ffiffiffi
2

p
t1Þ sinð2pt0Þ sinð2pxÞ;

vðx; t; eÞE ð�ð2=p3Þ cosð2
ffiffiffi
2

p
t1Þ � 6=p3Þ cosðpt0Þ sinðpxÞ

þ ð2
ffiffiffi
2

p
=p3Þ sinð2

ffiffiffi
2

p
t1Þ sinð2pt0Þ sinð2pxÞ

þ ðð�2=p3Þ cosð2
ffiffiffi
2

p
t1Þ þ 2=p3Þ cosð3pt0Þ sinð3pxÞ: ð29Þ

The graphs of these approximations for vðx; tÞ for x ¼ 0:5 and e ¼ 0:01 are depicted in Fig. 2.
For more than three modes, eigenvalues and eigenvectors become more and more difficult to

compute by just using pencil and paper. Using the computer software package Maple, the
eigenvalues of system (23) have been computed up to 20 modes and are listed in Table 1. From the
table, it can be seen that the eigenvalues of the truncated system are always purely imaginary, each
has multiplicity two, and for an odd number of modes one obtains an additional pair of zero
eigenvalues. From approximations (29) and from Table 1 it can readily be seen that the truncation

v(
0.

5,
t)

1 mode 2 modes 3 modes
1 mode 2 modes 3 modes

0

-0.2

46 50 54

0.2

Time (t )

Fig. 2. Approximations for vðx; tÞ with initial displacement f ðxÞ ¼ ð�8=p3Þ sinðpxÞ and initial velocity gðxÞ ¼ 0: The
graphs are given for x ¼ 0:5; tA½45; 55�; and e ¼ 0:01:
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method will not give accurate results on long time scales, that is, on time scales of order e�1: On
the other hand it is well known in mathematics that if the truncated system has only purely
imaginary eigenvalues and/or eigenvalues equal to zero then no conclusions can be drawn for the
infinite dimensional system.

4.1.2. Analysis of the infinite dimensional system (23)

The previous subsection shows that if system (23) is truncated then the eigenvalues of the
truncated system are always purely imaginary or zero. This section will show that the results
obtained by applying the truncation method are not valid on time scales of order e�1:
By putting kBk0ðt1Þ ¼ Yk0ðt1Þ and kAk0ðt1Þ ¼ Xk0ðt1Þ; system (23) becomes

dYk0=dt1 ¼ k½�Xðkþ1Þ0 � Xðk�1Þ0�; dXk0=dt1 ¼ k½Yðkþ1Þ0 þ Yðk�1Þ0�; ð30Þ

for k ¼ 1; 2; 3;y; and X00 ¼ Y00 ¼ 0:
Accordingly

Yk0
’Yk0 ¼ �k½Yk0Xðkþ1Þ0 þ Yk0Xðk�1Þ0�;

Xk0
’Xk0 ¼ k½Xk0Yðkþ1Þ0 þ Xk0Yðk�1Þ0�: ð31Þ

By adding both equations in Eq. (31), and then summing from k ¼ 1 to N

1
2

XN
k¼1

d

dt1
ðY 2

k0 þ X 2
k0Þ ¼

XN
k¼1

½Xðkþ1Þ0Yk0 � Yðkþ1Þ0Xk0�: ð32Þ

Table 1

Approximations of the eigenvalues of the truncated system (23)

No. of

modes

Eigenvalues of matrix A (all multiplicity 2) Dimension

eigenspace of A

1 0 2

2 7
ffiffiffi
2

p
i 4

3 0;72
ffiffiffi
2

p
i 6

4 71:13i;74:33i 8

5 0;72:30i;75:89i 10

6 77:50i;71:00i;73:56i 12

7 0;79:15i;72:05i;74:90i 14

8 710:83i;70:93i;73:18i;76:30i; 16

9 0;712:54i;71:89i;74:38i;77:74i 18

10 714:26i;70:87i;75:65i;79:23i;72:93i 20

11 0;716:01i;71:78i;74:05i;76:97i;710:76i 22

12 717:76i;70:83i;72:76i;75:22i;78:33i;712:31i 24

13 0;719:53i;71:70i;73:81i;76:45i;79:73i;713:88i;719:53i 26

14 721:31i;715:48i;70:80i;72:63i;74:92i;77:72i;711:16i 28

15 0;723:11i;717:10i;71:64i;73:63i;76:07i;79:03i;712:63i 30

16 724:91i;718:73i;70:78i;72:53i;74:68i;77:28i;710:38i;714:11i; 32

17 0;726:71i;720:38i;71:58i;73:49i;75:79i;78:52i;711:75i715:62i; 34

18 728:53i;722:05i;70:75i;72:45i;74:50i;76:93i;79:79i;713:16i;717:15i 36

19 0;730:35i;723:72i;71:54i;73:37i;75:55i;78:12i;711:10i;714:58i;718:70i 38

20 732:18i;725:41i;70:73i;72:38i;74:34i;76:65i;79:33i;712:43i;716:03i;720:27i 40
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By differentiating Eq. (32) with respect to t1 one finds (see also Appendix B)

1
2

XN
k¼1

d2

dt21
ðY 2

k0 þ X 2
k0Þ ¼ 2

XN
k¼1

ðX 2
k0 þ Y 2

k0Þ; ð33Þ

and so, by putting
P

N

k¼1 ðX 2
k0 þ Y 2

k0Þ ¼ W ðt1Þ; finally

d2W ðt1Þ
dt21

� 4W ðt1Þ ¼ 0: ð34Þ

The solution of Eq. (34) is W ðt1Þ ¼ K1e
2t1 þ K2e

�2t1 ; where K1 and K2 are constants. Note that
W ðt1Þ is a first integral of system (23). K1 and K2 are both positive numbers as is shown in the
following calculation. From W ðt1Þ ¼

P
N

k¼1 ½X 2
k0 þ Y 2

k0� it follows that

W ð0Þ ¼
XN
k¼1

½X 2
k0ð0Þ þ Y 2

k0ð0Þ�X0 ) K1 þ K2X0: ð35Þ

Differentiating W ðt1Þ with respect to t1 and then putting t1 ¼ 0

K1 � K2 ¼
XN
k¼1

½Yk0ð0ÞXðkþ1Þ0ð0Þ � Xk0ð0ÞYðkþ1Þ0ð0Þ�: ð36Þ

From Eqs. (35) and (36) it then follows that

2K1 ¼
XN
k¼1

½X 2
k0ð0Þ þ Y 2

k0ð0Þ þ Yk0ð0ÞXðkþ1Þ0ð0Þ � Xk0ð0ÞYðkþ1Þ0ð0Þ�

¼ 1
2

X 2
10ð0Þ þ

1
2

Y 2
10ð0Þ þ

1
2
ðX10ð0Þ � Y20ð0ÞÞ

2 þ 1
2
ðY10ð0Þ þ X20ð0ÞÞ

2

þ 1
2
ðX20ð0Þ � Y30ð0ÞÞ

2 þ 1
2
ðY20ð0Þ þ X30ð0ÞÞ

2 þ?

þ 1
2
ðXn0ð0Þ � Yðnþ1Þ0ð0ÞÞ

2 þ 1
2
ðYn0ð0Þ þ Xðnþ1Þ0ð0ÞÞ

2 þ?X0: ð37Þ

So, K1X0 and 0 if and only if Xk0ð0Þ ¼ Yk0ð0Þ ¼ 0 for each k ¼ 1; 2; 3;y:Using a similar method,
K2 also can be shown to be a non-negative number. Consequently, W ðt1Þ is, in general, non-
negative and increases as t1 increases. This behavior is different from the behavior of Ak0ðt1Þ and
Bk0ðt1Þ as obtained by applying the truncation method. If one applies the truncation method, one
merely obtains sin and cos functions for Ak0 and Bk0 while the energy (see next subsection) is
described by exponential functions. This means that the approximations obtained by applying the
truncation method to system (23) are not accurate on long time scales, that is, on time scales of
order e�1:

4.1.3. The energy

The energy EðtÞ of the conveyor belt system can also be approximated using the functionW ðt1Þ:
Since

vðx; tÞ ¼
XN
k¼1

vkðtÞ sin
kpx

L

� �

¼
XN
k¼1

Ak0ðt1Þ cos
ckpt

L

� �
þ Bk0ðt1Þ sin

ckpt

L

� �� �
sin

kpx

L

� �
þ OðeÞ; ð38Þ
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it follows that the energy EðtÞ satisfies

EðtÞ ¼ 1
2

Z L

0

½ðvt þ VvxÞ
2 þ c2v2x� dx

¼
c2p2

4L

XN
k¼1

k2 �Ak0 sin
kpt

L

� �
þ Bk0 cos

kpt

L

� �� �2"

þ Ak0 cos
ckpt

L

� �
þ Bk0 sin

ckpt

L

� �� �2#
þ OðeÞ

¼
c2p2

4L

XN
k¼1

½ðkAk0Þ
2 þ ðkBk0Þ

2� þ OðeÞ

¼
c2p2

4L

XN
k¼1

½X 2
k0 þ Y 2

k0� þ OðeÞ ¼
c2p2

4L
W ðt1Þ þ OðeÞ ð39Þ

¼
c2p2

4L
ðK1e

2t1 þ K2e
�2t1Þ þ OðeÞ: ð40Þ

So, the energy increases, although it is bounded on a time scale of order 1=e:

4.2. Case 2: O ¼ cp=L þ ed

In this section detuning from O ¼ cp=L; will be studied in which the case O ¼ cp=L þ ed where
d ¼ Oð1Þ is considered. In order to avoid secular terms in the approximation, it can be shown (the
calculation are similar to those in Section 4.1) that Ak0ðt1Þ and Bk0ðt1Þ have to satisfy

dAk0=d%t1 ¼ðk þ 1Þ½Bðkþ1Þ0 cosðd%t1Þ þ Aðkþ1Þ0 sinðd%t1Þ�

þ ðk � 1Þ½Bðk�1Þ0 cosðd%t1Þ � Aðk�1Þ0 sinðd%t1Þ�;

dBk0=d%t1 ¼ � ðk þ 1Þ½Aðkþ1Þ0 cosðd%t1Þ � Bðkþ1Þ0 sinðd%t1Þ�

� ðk � 1Þ½Aðk�1Þ0 cosðd%t1Þ þ Bðk�1Þ0 sinðd%t1Þ�; ð41Þ

for k ¼ 1; 2; 3;y : It should be noticed that for d ¼ 0 one obtains again system (23). For
convenience, the bar from %t1 is omitted.
The calculations as given in Section 4.1.2 can be followed again to obtain

d2W ðt1Þ=dt21 þ ðd2 � 4ÞW ðt1Þ ¼ D1d
2; ð42Þ

where W ðt1Þ is defined as in Section 4.1.2, and D1 ¼ W ð0Þ: Elementary calculations then yield

for jdjo2: W ðt1Þ ¼
D1

4� d2
½4 coshðt1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� d2

p
Þ � d2� þ

D2ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� d2

p sinhðt1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
4� d2

p
Þ;

for jdj ¼ 2: W ðt1Þ ¼ D1 þD2t1 þ 1
2 D1d

2t21;

for jdj > 2: W ðt1Þ ¼
D1

d2 � 4
½d2 � 4 cosðt1

ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4

p
Þ� þ

D2ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4

p sinðt1
ffiffiffiffiffiffiffiffiffiffiffiffiffi
d2 � 4

p
Þ;
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where D2 ¼ dW ð0Þ=dt1: The interesting features of these solutions are, that for jdjo2; W ðt1Þ (and
so the energy) increases exponentially. For jdj ¼ 2;W ðt1Þ increases polynomially, and finally for
jdj > 2;W ðt1Þ is bounded due to the trigonometric functions.

4.3. Case 3: the non-resonant case

If O is not within an order e-neighborhood of the frequencies that cause internal resonance, that
is, not within an order e-neighborhood of mcp=L (with m odd) then Ak0ðt1Þ and Bk0ðt1Þ have to
satisfy

dAk0=dt1 ¼ 0; dBk0=dt1 ¼ 0; ð43Þ

in order to avoid secular terms. Consequently, Ak0ðt1Þ and Bk0ðt1Þ are constants, say
K1k0 and K2k0 such that vk0ðt0; t1Þ ¼ K1k0 cosðckpt0=LÞ þ K2k0 sinðckpt0=LÞ: Since vðx; tÞ ¼P

N

k¼1 vkðtÞ sinðkpx=LÞ; where vkðtÞ is approximated by wk0ðt0; t1Þ; it follows from the initial
conditions vðx; 0Þ ¼ f ðxÞ and vtðx; 0Þ ¼ gðxÞ that

K1k0 ¼
2

L

Z L

0

f ðxÞ sin
kpx

L

� �
dx; K2k0 ¼

2

ckp

Z L

0

gðxÞ sin
kpx

L

� �
dx: ð44Þ

The energy EðtÞ of the conveyor belt system for this case can be approximated from

vðx; tÞE
XN
k¼1

K1k0 cos
ckpt0

L

� �
þ K2k0 sin

ckpt0

L

� �� �
sin

kpx

L

� �
þ OðeÞ; ð45Þ

where K1k0 and K2k0 are given by Eq. (44). Then,

EðtÞ ¼
Z L

0

ðv2t þ c2v2xÞ dx þ OðeÞ

¼
XN
k¼1

ðckpÞ2

2L
ðK12k0 þ K22k0Þ þ OðeÞ

¼
c2p2

2L

XN
k¼1

k2ðK12k0 þ K22k0Þ þ OðeÞ; ð46Þ

Using Eq. (44), finally,

EðtÞ ¼
2c2L

p2
XN
k¼1

1

k2

Z L

0

f 00 sin
kpx

L

� �
dx

� �2
þ
2L3

p4
XN
k¼1

1

k4

Z L

0

g00 sin
kpx

L

� �
dx

� �2
þOðeÞ

¼ constant þ OðeÞ: ð47Þ

5. Conclusions

In this paper, initial-boundary-value problems which can be used as models to describe
transversal vibrations of belt systems, have been studied. The belt was assumed to move with a
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non-constant, low velocity V ðtÞ; that is, V ðtÞ ¼ eðV0 þ a sinðOtÞÞ; where 0oe51 and V0; a;O are
constants. Formal approximations of the solution of the initial-boundary-value problem have
been constructed. Also explicit approximations of the energy of the belt system have been given. It
turns out that there are infinitely many values of O giving rise to internal resonances in the belt
system. These values for O are mcp=L þ ed where m is an arbitrary odd integer, cp=L is the lowest
natural frequency of the constant velocity system, and d is a detuning parameter of Oð1Þ: For
O ¼ cp=L þ ed (that is, m ¼ 1) the problem has been studied completely. The following interesting
results have been found: for jdjo2 the energy of the belt system increases exponentially, for jdj ¼ 2
the energy increases polynomially and for jdj > 2 the energy is bounded and varies
trigonometrically. When O is not in an order e-neighborhood of mcp=L (with m odd) the energy
of the belt system is constant up to order e: All the results found are valid on long time scales, that
is, on time scales of order e�1:
One major conclusion of this paper is that the truncation method cannot be applied to

obtain asymptotic results on long time scales (that is, on time scales of order e�1) when O is
in an order e-neighborhood of an odd multiple of the lowest natural frequency of the constant
velocity system. Moreover, in this paper improvements have been suggested to the (incorrect)
results and applied methods as for instance given and used in Refs. [7–10] for low-speed belt
systems.

Appendix A

In order to remove secular terms in the approximation for vðx; t; eÞ this appendix will show that
the function Ak0ðt1Þ and Bk0ðt1Þ have to satisfy

dAk0ðt1Þ=dt1 ¼ ðk þ 1ÞBðkþ1Þ0ðt1Þ þ ðk � 1ÞBðk�1Þ0ðt1Þ;

dBk0ðt1Þ=dt1 ¼ �ðk þ 1ÞAðkþ1Þ0ðt1Þ � ðk � 1ÞAðk�1Þ0ðt1Þ; ðA:1Þ

for k ¼ 1; 2; 3;y : This can be derived as follows. After introducing a slow and a fast
time in Section 4, Eq. (21) with O ¼ cp=L was obtained. The solution of the Oð1Þ problem is
vk0ðt0; t1Þ ¼ Ak0ðt1Þ cosðckpt0=LÞ þ Bk0ðt1Þ sinðckpt0=LÞ; where Ak0 and Bk0 can be determined
from the OðeÞ equation by removing terms on the right side of this equation causing secular terms
in vk1ðt0; t1Þ:
The first term on the right side of the OðeÞ equation causing secular terms is �2@2vk0=@t0@t1 ¼

2ðckp=LÞ½ðdAk0=dt1Þ sinðckpt0=LÞ � ðdBk0=dt1Þ cosðckpt0=LÞ�:
Separating those terms in the second term of the right side the OðeÞ equation causing secular

terms,

X
1

�
X
2

�
X
3

" #
2naO

ð2j þ 1ÞL
cosðOt0Þvn0

¼
X
1

�
X
2

�
X
3

" #
2naO

ð2j þ 1ÞL
cosðOt0Þ An0ðt1Þ cos

cnpt0

L

	 

þ Bn0ðt1Þ sin

cnpt0

L

	 
h i
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¼
acp
L2

cos
ckpt0

L

� �
ðk þ 1ÞAðkþ1Þ0 � ðk � 1ÞAðk�1Þ0 �

k þ 1
2k þ 1

Aðkþ1Þ0 �
k � 1
2k � 1

Aðk�1Þ0

� �

þ
acp
L2

sin
ckpt0

L

� �
ðk þ 1ÞBðkþ1Þ0 � ðk � 1ÞBðk�1Þ0 �

k þ 1
2k þ 1

Bðkþ1Þ0 �
k � 1
2k � 1

Bðk�1Þ0

� �
þ ‘‘terms not giving rise to secular terms in vk1’’:

Similarly, for the third term,

X
1

�
X
2

�
X
3

" #
4n

ð2j þ 1ÞL
ðV0 þ a sinðOt0ÞÞ

@vn0

@t0

¼
X
1

�
X
2

�
X
3

" #
4n

ð2j þ 1ÞL
ðV0 þ a sinðOt0ÞÞ

cnp
L

Bn0 cos
cnpt0

L

	 

� An0 sin

cnpt0

L

	 
h i

¼
acp
L2

cos
ckpt0

L

� �
�2ðk þ 1Þ2Aðkþ1Þ0 � 2ðk � 1Þ2Aðk�1Þ0

�

þ
2ðk þ 1Þ2

2k þ 1
Aðkþ1Þ0 �

2ðk � 1Þ2

2k � 1
Aðk�1Þ0

�
þ

acp
L2

sin
ckpt0

L

� �

	 �2ðk þ 1Þ2Bðkþ1Þ0 � 2ðk � 1Þ2Bðk�1Þ0 þ
2ðk þ 1Þ2

2k þ 1
Bðkþ1Þ0 �

2ðk � 1Þ2

2k � 1
Bðk�1Þ0

� �
þ ‘‘terms not giving rise to secular terms in vk1’’:

By collecting all terms on the right side of the OðeÞ equation containing cosðckpt0=LÞ and those
containing sinðckpt0=LÞ; setting their coefficients equal to 0 in order to remove the secular terms,
one obtains (A.1).

Appendix B

In this appendix one shows that

1
2

XN
k¼1

d2

dt21
ðY 2

k0 þ X 2
k0Þ ¼ 2

XN
k¼1

ðX 2
k0 þ Y 2

k0Þ: ðB:1Þ

From Eq. (30) it follows that

1
2

XN
k¼1

d

dt1
ðY 2

k0 þ X 2
k0Þ ¼

XN
k¼1

½Yk0
’Yk0 þ Xk0

’Xk0�

¼
XN
k¼1

½Xðkþ1Þ0Yk0 � Yðkþ1Þ0Xk0�:
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Differentiating this expression with respect to t1; and using Section 4.11

1
2

XN
k¼1

d2

dt21
ðY 2

k0 þ X 2
k0Þ ¼

XN
k¼1

½ ’Xðkþ1Þ0Yk0 þ Xðkþ1Þ0 ’Yk0 � ’Yðkþ1Þ0Xk0 � Yðkþ1Þ0 ’Xk0�

¼
XN
k¼1

ðk þ 1Þ½X 2
k0 þ Y 2

k0� �
XN
m¼2

ðm � 1Þ½X 2
m0 þ Y 2

m0�

¼ 2ðX 2
10 þ Y 2

10Þ þ
XN
k¼2

ðk þ 1Þ½X 2
k0 þ Y 2

k0� �
XN
m¼2

ðm � 1Þ½X 2
m0 þ Y 2

m0�

¼ 2ðX 2
10 þ Y 2

10Þ þ
XN
k¼2

½ðk þ 1Þ � ðk � 1Þ�½X 2
k0 þ Y 2

k0�

¼ 2ðX 2
10 þ Y 2

10Þ þ
XN
k¼2

2½X 2
k0 þ Y 2

k0� ¼ 2
XN
k¼1

½X 2
k0 þ Y 2

k0�:

And so, Eq. (B.1) has been proved.
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